A BIOGENETIC-TYPE ASYMMETRIC CYCLIZATION SYNTHESES OF OPTICALLY ACTIVE α -CYCLOCITRAL AND <u>TRANS- α -DAMASCONE</u>

Shun-ichi Yamada*, Masakatsu Shibasaki, and Shiro Terashima Faculty of Pharmaceutical Sciences, University of Tokyo, Bunkyoku, Tokyo, Japan

(Received in Japan 9 December 1972; received in UK for publication 2 January 1973)

In vivo, acyclic terpenes having no asymmetric center are generally convert ed to cyclic terpenes carrying several asymmetric carbons by the so-called enzymic cyclization reaction. Aiming to achieve the same kinds of transformation as those observed <u>in vivo</u> by chemical means,¹⁾ we applied the acidcatalyzed biogenetic-type cyclization of the citral-pyrrolidine enamine(I_a) developed previously in our laboratory²⁾, to the optically active enamines (I_{b-f}) prepared from citral(a mixture of <u>cis-</u> and <u>trans-</u>isomers)(II)³⁾ and several kinds of optically active pyrrolidines(III_{b-f})^{4,5)} easily prepared from commercially available L-proline.

This communication concerns with the preliminary results of the abovementioned biogenetic-type asymmetric synthesis and the subsequent conversion of

a: R=H; b: R=Me; c: R=i-Pr; d: R=CON ; e: R=CONEt₂; f: R=COOEt

381

optically active α -cyclocitral(S(+)-IV)⁶) thus obtained to optically active <u>trans</u>- α -damascone(S(+)-V), a famous perfume which recently synthesized from optically active α -ionone.⁷)

Table. Asymmetric Cyclizations of Citral(II) to $S(+)-\alpha$ -Cyclocitral(S(+)-IV) via Enamines(I_{b-f})

Enamine(I _{b-f}) Formations			Asymmetric Cyclizations		
Run	Optically Active	Molar Ratio	Formed S(+)-a-Cyclocitral		
	Pyrrolidines(III) Used.	of III/II	Isolated Yield ^a	[α] ²⁰ (c, EtOH)	Optical Yield ^b
1	III _b	1.2	26	+72.3°(0.678)	12
2	III _c	1.2	26	+158.6°(0.710)	27
3	III _d	1.0	8	+131.1°(0.810)	22
4	III _e	1.0	4	+198.1°(0.284)	33
5	III _f	1.0	9	1.8°(1.108)	0.3

a) Based on II

b) Calculated based on the assumption that S(+)-IV showing $[\alpha]_D^{20}+594.5^{\circ}(EtOH)$ was 100% optically pure.⁸⁾

Results of the asymmetric cyclization were summarized in the Table.

Reaction conditions for the formations of I_{b-f} from II and III_{b-f} were identical with those previously reported,²⁾ except for the molar ratio of III_{b-f} and II¹⁰⁾ which are shown in the Table. All the cyclization reactions were carried out using the best condition (0° in conc. sulfuric acid-water(ratio by vol. 10:1) for 3 hr), which had afforded dl-IV in the highest yield.²⁾ Work-up procedure was also identical with that described before.²⁾ In every case, formation of the trace amount of β -cyclocitral was definitely observed in the crude reaction product.²⁾

That S(+)-IV was isolated in very low yield in runs 3,4 and 5, is conceivably due to the competition of the decomposition of $I_{d,e,f}$ in conc. sulfuric acid with the acid-catalyzed cyclization. Since the enamine(I_c) afforded 27% optically active S(+)-IV in 26% yield, further studies using optically active

pyrrolidines which have an acid-stable alkyl or aryl substituent at α -position, would let us to find out more suitable III for the asymmetric cyclization than those examined here.

It is reasonably expected that S(+)-IV produced by this novel asymmetric cyclization will be one of the best key intermediates for the total syntheses of several kinds of optically active terpenes, for example, $(+)-\alpha$ -ionone and $(+)-\alpha$ -carotene, having the partial structure(VI).

We also visualized the above-mentioned expectation by converting S(+)-IV obtained by the asymmetric reaction to S(+)-V in two steps. That is, treatment

of S(+)-IV showing $[\alpha]_D^{20}+172.4^{\circ}(c=0.282, EtOH)$, 29% optically pure, with 1propenyl lithium(a mixture of <u>cis</u>- and <u>trans</u>-isomers) in ether at 20° for 19 hr, followed by the oxidation with chromium trioxide-pyridine and the subsequent geometrical isomerization of the olefinic double bond in the reaction medium, afforded S(+)-V, $[\alpha]_D^{20}+89.2^{\circ}(c=1.058, CHCl_3)$, 28% optically pure, in 66% yield based on S(+)-IV. S(+)-V thus prepared was confirmed by comparing its spectral data with those reported.⁷

Improvement of the asymmetric synthesis and total syntheses of other optically active terpenes carrying partial structure(VI) are under progress.

REFERENCES

- See for example, W.S. Johnson, C.A. Harbert, and R.D. Stipanovic, <u>J. Am. Chem.</u> Soc., <u>90</u>, 5279(1968).
- S. Yamada, M. Shibasaki, and S. Terashima, <u>Tetrahedron Letters</u>, preceeding paper.

The ratio of <u>cis-</u> and <u>trans-II</u> was determined to be 5:6 by the glc analysis.
 S. Yamada, M. Shibasaki, and S. Terashima, to be published.

5. G. Ohtani, and S. Yamada, Chem. Pharm. Bull. (Tokyo), in press.

- 6. The absolute configuration of the formed (+)-IV has been already established to be S-configuration by the chemical correlation. See, C.H. Eugster,
 H. Buckecker, C. Tscharner, G. Uhde, and G. Ohloff, <u>Helv. Chim. Acta</u>, <u>52</u>, 1729(1969) and T. Oritani, K. Yamashita, and H. Meguro, <u>Agr. Biol</u>. <u>Chem</u>., <u>36</u>, 885(1972).
- 7. G. Ohloff, and G. Uhde, Helv. Chim. Acta, 53, 531(1970).
- 8. Reduction of S(+)-IV, $[\alpha]_D^{20}+131.1^{\circ}(c=0.810, EtOH)$ with sodium borohydride gave $S(+)-\alpha$ -cyclogeraniol, $[\alpha]_D^{20}+26.9^{\circ}(c=0.610, EtOH)$. On the other hand, reduction of $R(-)-\alpha$ -cyclogeranic acid, $[\alpha]_{5+6}^{20}-334.3^{\circ}(c=1.096, EtOH)$, 84.4% optically pure,⁹⁾ prepared by the resolution of dl- α -cyclogeranic acid,⁹⁾ with lithium aluminium hydride, afforded $R(-)-\alpha$ -cyclogeraniol, $[\alpha]_D^{20}-103.1^{\circ}$ (c=0.686, EtOH). Calculations based on the above transformations, clearly disclosed that optically pure S(+)-IV should have $[\alpha]_D^{20}+594.5^{\circ}(EtOH)$.

9. D.J. Bennett, G.R. Ramage, and J.L. Simonsen, <u>J. Chem. Soc.</u>, <u>1940</u>, 418. 10. We chose these molar ratios by considering the volatility of III_{b-f} .